INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE

B.MATH - Second Year, 2023-24, Introduction to Linear Models Mid-semesteral Examination, February 23, 2024
Marks are shown in square brackets.
Total Marks: 35
Time: $2 \frac{1}{2}$ Hours

1. Suppose $\Sigma=\operatorname{Cov}(\mathbf{X})=\left(\begin{array}{llll}1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1\end{array}\right)$ for some random vector X.
(a) Give an example of a random vector \mathbf{X} where Σ has $\rho=1$. Is it possible to have $\rho=-1$ in Σ ?
(b) Show that $-1 / 3 \leq \rho \leq 1$.

$$
[2+5]
$$

2. Suppose $\mathbf{X} \sim N_{p}(\mathbf{0}, \Sigma)$ where $\operatorname{Rank}(\Sigma)=r \leq p$ and let B and D be symmetric matrices. Show that $\mathbf{X}^{\prime} B \mathbf{X}$ and $\mathbf{X}^{\prime} D \mathbf{X}$ are independent χ^{2} random variables if and only if
$\Sigma B \Sigma B \Sigma=\Sigma B \Sigma, \Sigma B \Sigma D \Sigma=\mathbf{0}$.

$$
[7+5]
$$

3. Consider the Gauss-Markov model: $\mathbf{Y}=X \beta+\epsilon, E(\epsilon)=0, \operatorname{Cov}(\epsilon)=\sigma^{2} I_{n}$. Prove that $\mathbf{a}^{\prime} \beta$ is estimable if and only if $\mathbf{a}^{\prime}\left(X^{\prime} X\right)^{-} X^{\prime} X=\mathbf{a}^{\prime}$.
4. Consider the following model:

$$
\begin{aligned}
& y_{1}=\alpha+\phi+\gamma+\epsilon_{1} \\
& y_{2}=\alpha+\phi-\gamma+\epsilon_{2} \\
& y_{3}=2 \alpha+2 \phi+\gamma+\epsilon_{3} \\
& y_{4}=2 \alpha+2 \phi-\gamma+\epsilon_{4}
\end{aligned}
$$

where α, ϕ, γ are unknown regression parameters and ϵ_{i} are uncorrelated random variables having mean 0 and variance σ^{2}.
(a) Does BLUE of $\alpha+\phi-2 \gamma$ exist? Justify. Find it if it exists.
(b) Find the degrees of freedom of RSS.

